https://spnfa.ir/20220426/هوش-مصنوعی-برای-تشخیص-محرمانه-سرطان-10784616.html
هوش مصنوعی برای تشخیص محرمانه سرطان
هوش مصنوعی برای تشخیص محرمانه سرطان
اسپوتنیک ایران
دانشمندان دانشگاه لیدز روشی را برای پیش بینی سرطان از روی اطلاعات بیمار با کمک هوش مصنوعی و بدون به خطر انداختن اطلاعات شخصی فرد کشف کردند. 26.04.2022, اسپوتنیک ایران
2022-04-26T18:00+0430
2022-04-26T18:00+0430
2022-04-26T18:00+0430
جهان
https://cdn1.img.spnfa.ir/img/07e4/0b/17/7190756_0:139:3151:1911_1920x0_80_0_0_64cce3a228243ec7b603b83cc6721aec.jpg
به گزارش اسپوتنیک به نقل از ساینسدیلی، هوش مصنوعی(AI) میتواند دادههای زیادی از جمله تصاویر یا نتایج آزمایشها را تجزیه و تحلیل کند و الگوهایی را که اغلب توسط انسان غیرقابل شناسایی هستند، تشخیص دهد. به همین دلیل هوش مصنوعی میتواند برای تسریع تشخیص و درمان بیماریها بسیار ارزشمند باشد. در عین حال استفاده از این فناوری در محیطهای پزشکی به دلیل خطر انتشار تصادفی دادهها بحث برانگیز بوده و علاوه بر آن بسیاری از این سیستمها تحت مالکیت و کنترل شرکتهای خصوصی هستند که به آنها امکان دسترسی به اطلاعات محرمانه بیمار را میدهد و مسئولیت حفاظت از این دادهها نیز بر عهدهی آنها است.محققان در پی آن بودند که آیا نوعی از هوش مصنوعی به نام "یادگیری ازدحامی"(swarm learning) میتواند به رایانهها در پیشبینی سرطان در تصاویر پزشکی نمونههای بافت بیمار کمک کند، بدون آنکه این اطلاعات از بیمارستانها به بیرون درز کند یا خیر. "یادگیری ازدحامی" الگوریتمهای هوش مصنوعی را برای تشخیص الگوهای موجود در دادههای یک بیمارستان یا دانشگاه محلی مانند تغییرات ژنتیکی در تصاویر ثبت شده از بافتهای انسان، آموزش میدهد. سپس سیستم یادگیری ازدحامی، این الگوریتم تازه آموزش دیده را بدون آنکه حاوی اطلاعات بیمار باشد، به یک رایانهی مرکزی میفرستد. این الگوریتم در آنجا با دیگر الگوریتمهای تولید شده با روشی یکسان توسط سایر بیمارستانها ترکیب و یک الگوریتم بهینه ایجاد میکند. سپس این الگوریتم به بیمارستان محلی اولیه فرستاده میشود و بار دیگر بر روی دادههای اصلی اعمال شده و به لطف قابلیتهای تشخیصی حساستر، تغییرات ژنتیکی را بهتر تشخیص میدهد. با چندین بار انجام این کار، میتوان الگوریتم را بهبود بخشید و الگوریتمی ایجاد کرد که روی همهی مجموعه دادهها کار کند. این بدان معناست که این روش را میتوان بدون نیاز به ارسال هیچگونه دادهای برای شرکت ثالث یا ارسال داده بین بیمارستانها یا فراتر از مرزهای بینالمللی به کار برد.محققان الگوریتمهای هوش مصنوعی را با استفاده از دادههای مربوط به سه گروه از بیماران در ایرلند شمالی، آلمان و ایالات متحده آمریکا آموزش دادند. الگوریتمها بر روی دو مجموعه بزرگ از دادههای تصویری تولید شده در دانشگاه لیدز آزمایش شدند و مشخص شد که این الگوریتمها با موفقیت آموختهاند که چگونه وجود انواع مختلف سرطان را در تصاویر پیشبینی کنند. این تحقیق توسط "جاکوب نیکولاس کاتر"(Jakob Nikolas Kather)، دانشیار مدعو در دانشکده پزشکی دانشگاه لیدز و محقق بیمارستان دانشگاهی "راینیش-وستفلیشه آخِن"(RWTH Aachen) رهبری شد. این تیم شامل پروفسور "هایک گرابش"(Heike Grabsch) و "فیل کویرک"(Phil Quirke) و دکتر "نیک وست"(Nick West) از دانشکده پزشکی دانشگاه لیدز بود.دکتر کاتر یکی از محققین می گوید: بر اساس دادههای بیش از ۵۰۰۰ بیمار، ما توانستیم نشان دهیم که مدلهای آموزش دیدهی هوش مصنوعی با یادگیری ازدحامی میتوانند تغییرات ژنتیکی مرتبط بالینی را به طور مستقیم در تصاویر بافت تومورهای روده بزرگ پیشبینی کنند.
اسپوتنیک ایران
feedback.me@sputniknews.com
+74956456601
MIA „Rossiya Segodnya“
2022
اسپوتنیک ایران
feedback.me@sputniknews.com
+74956456601
MIA „Rossiya Segodnya“
خبرها
fa_FA
اسپوتنیک ایران
feedback.me@sputniknews.com
+74956456601
MIA „Rossiya Segodnya“
https://cdn1.img.spnfa.ir/img/07e4/0b/17/7190756_209:0:2940:2048_1920x0_80_0_0_98f726d4f3df0826a241396b1e7bf821.jpgاسپوتنیک ایران
feedback.me@sputniknews.com
+74956456601
MIA „Rossiya Segodnya“
جهان
هوش مصنوعی برای تشخیص محرمانه سرطان
دانشمندان دانشگاه لیدز روشی را برای پیش بینی سرطان از روی اطلاعات بیمار با کمک هوش مصنوعی و بدون به خطر انداختن اطلاعات شخصی فرد کشف کردند.
به گزارش اسپوتنیک به نقل از ساینسدیلی، هوش مصنوعی(AI) میتواند دادههای زیادی از جمله تصاویر یا نتایج آزمایشها را تجزیه و تحلیل کند و الگوهایی را که اغلب توسط انسان غیرقابل شناسایی هستند، تشخیص دهد.
به همین دلیل هوش مصنوعی میتواند برای تسریع تشخیص و درمان بیماریها بسیار ارزشمند باشد. در عین حال استفاده از این فناوری در محیطهای پزشکی به دلیل خطر انتشار تصادفی دادهها بحث برانگیز بوده و علاوه بر آن بسیاری از این سیستمها تحت مالکیت و کنترل شرکتهای خصوصی هستند که به آنها امکان دسترسی به اطلاعات محرمانه بیمار را میدهد و مسئولیت حفاظت از این دادهها نیز بر عهدهی آنها است.
محققان در پی آن بودند که آیا نوعی از هوش مصنوعی به نام "یادگیری ازدحامی"(swarm learning) میتواند به رایانهها در پیشبینی سرطان در تصاویر پزشکی نمونههای بافت بیمار کمک کند، بدون آنکه این اطلاعات از بیمارستانها به بیرون درز کند یا خیر. "یادگیری ازدحامی" الگوریتمهای هوش مصنوعی را برای تشخیص الگوهای موجود در دادههای یک بیمارستان یا دانشگاه محلی مانند تغییرات ژنتیکی در تصاویر ثبت شده از بافتهای انسان، آموزش میدهد. سپس سیستم یادگیری ازدحامی، این الگوریتم تازه آموزش دیده را بدون آنکه حاوی اطلاعات بیمار باشد، به یک رایانهی مرکزی میفرستد. این الگوریتم در آنجا با دیگر الگوریتمهای تولید شده با روشی یکسان توسط سایر بیمارستانها ترکیب و یک الگوریتم بهینه ایجاد میکند. سپس این الگوریتم به بیمارستان محلی اولیه فرستاده میشود و بار دیگر بر روی دادههای اصلی اعمال شده و به لطف قابلیتهای تشخیصی حساستر، تغییرات ژنتیکی را بهتر تشخیص میدهد. با چندین بار انجام این کار، میتوان الگوریتم را بهبود بخشید و الگوریتمی ایجاد کرد که روی همهی مجموعه دادهها کار کند. این بدان معناست که این روش را میتوان بدون نیاز به ارسال هیچگونه دادهای برای شرکت ثالث یا ارسال داده بین بیمارستانها یا فراتر از مرزهای بینالمللی به کار برد.
محققان الگوریتمهای هوش مصنوعی را با استفاده از دادههای مربوط به سه گروه از بیماران در ایرلند شمالی، آلمان و ایالات متحده آمریکا آموزش دادند. الگوریتمها بر روی دو مجموعه بزرگ از دادههای تصویری تولید شده در دانشگاه لیدز آزمایش شدند و مشخص شد که این الگوریتمها با موفقیت آموختهاند که چگونه وجود انواع مختلف سرطان را در تصاویر پیشبینی کنند. این تحقیق توسط "جاکوب نیکولاس کاتر"(Jakob Nikolas Kather)، دانشیار مدعو در دانشکده پزشکی دانشگاه لیدز و محقق بیمارستان دانشگاهی "راینیش-وستفلیشه آخِن"(RWTH Aachen) رهبری شد. این تیم شامل پروفسور "هایک گرابش"(Heike Grabsch) و "فیل کویرک"(Phil Quirke) و دکتر "نیک وست"(Nick West) از دانشکده پزشکی دانشگاه لیدز بود.
دکتر کاتر یکی از محققین می گوید: بر اساس دادههای بیش از ۵۰۰۰ بیمار، ما توانستیم نشان دهیم که مدلهای آموزش دیدهی هوش مصنوعی با یادگیری ازدحامی میتوانند تغییرات ژنتیکی مرتبط بالینی را به طور مستقیم در تصاویر بافت تومورهای روده بزرگ پیشبینی کنند.